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Automated Selective REM Sleep Restriction Through Non-invasive Somatosensory Stimulation

Figure 1: Experimental setup for sleep restriction
experiments. EEG/EMG data were processed in real
time by custom software, which stimulated the animal
upon detection of REM via a tactile transducer
mounted under the floor of the cage (MouseQwake,
Signal Solutions, LLC). Annotations of REM detection
and stimulation were stored in the data file.
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Figure 4: Example of REM sleep disruption. EEG/EMG data were processed in real time through custom
LabVIEW software, which labeled incoming data as Wake, NREM, or REM sleep. Upon detecting REM, a
sinusoidal waveform of pre-specified amplitude and frequency was generated to actuate the
MouseQwake system to interrupt REM. A 5-second delay from detection to stimulation was programmed
to avoid stimulating brief, probably erroneous REM classifications.

Six C57BL/6 mice (3m, 3f) were surgically
implanted with EEG/EMG headmount
electrodes. After recovery from surgery,
animals were transferred to a cage where
EEG, EMG, motion (piezo), and video were
recorded. EEG/EMG signals were also
decoded in real time by custom software,
which classified signals as REM sleep,
Non-REM sleep (NREM), or wakefulness
(Wake) with 1-second resolution. During
RSR, REM classification triggered vibro-
tactile stimulation via a mechanical
transducer under the floor of the cage.
Each animal underwent 3 trials of RSR,
each with a different combination of
stimulation parameters. Following
experiments, raw data was segmented
into 4-second epochs and manually
scored to assess the effects of RSR trials
on sleep architecture.

This initial investigation of MouseQwake’s
use in selective sleep restriction showed
promising results, drastically affecting the
mean REM bout duration. However, after
several hours of stimulation, it was difficult
to combat the homeostatic drive using
static, non-adaptive stimulation parameters.
In light of this, future development will
incorporate reinforcement learning for
automatic selection and adaptation of
stimulation parameters to overcome the
circadian and homeostatic drives for REM
sleep we have seen here. Furthermore,
identification of sleep through the non-
invasive piezoelectric motion sensor could
alleviate the need for EEG implantation,
resulting in a completely non-invasive
system for sleep monitoring and
perturbation.

The role of REM sleep in normal physiological function and health is widely studied, most
commonly by selectively interrupting it when it occurs. Many protocols have been
developed for experimental REM sleep restriction (RSR), but they are often stressful to the
animal or alter its normal behavior. To address these limitations, we have developed an
automated system that tracks sleep stage in real time and applies non-invasive vibrotactile
stimulation to induce a state change. Stimulation can be tuned in frequency and amplitude
to be more subtle or intense, making it more flexible than other systems. Here, we apply the
system to the task of selective RSR, to assess its ability to yield an effect on REM sleep and
explore the feasibility of producing graded effects by tuning the stimulation parameters
(amplitude, frequency).

Figure 7: ECDFs of state bout durations resulting from each stimulation parameter set. RSR with high
intensity parameters resulted in a dramatic decrease in the duration of REM bouts, with 90% of bouts being
less than 50 seconds in duration. Lower intensity stimulation produced a more mild effect, but still diverged
from that seen in the baseline.
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In order to detect REM sleep in real time,
features of the EEG/EMG data were
computed at 1–second intervals for a 6-
hour baseline recording, and used to build
a Gaussian observation hidden Markov
model (Figure 2). The model was then
implemented for real-time use through a
custom LabVIEW program, which reduced
EEG/EMG data to a three-dimensional
feature vector, that would be classified as
either Wake, NREM, or REM, in a manner
that closely approximates manual scoring
(Figure 3).
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Figure 3: Comparison of classifier output and manual
scores. While the model tends to underestimate
sleep fragmentation (i.e. NREM to Wake transitions),
it gives very reasonable approximations of REM
sleep behavior.
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Figure 9: Application of reinforcement learning for
stimulation adaptation. Stimulation parameters
would be defined in a given space and the algorithm
would search the space to learn which parameters
work the best (a). The policy under which it would
choose parameters can be tuned to favor either
more intense (b, left) or subtle (b, right)
stimulations.

Figure 5: Timeline of RSR experiments. Each trial consisted of 48-hours, in which hours 0-14 served as a
baseline for a time-locked RSR trial on day 2, allowing for direct comparison of sleep behavior to a recent
baseline. In addition to the post-RSR recovery period, each animal was allowed to recover for an entire
day before the next trial’s baseline recording to prevent previous trials from affecting the outcomes.

Figure 2: Process used to model sleep. A time series of EEG/EMG features are recorded (a),
clustered (b), and modelled as a Markov chain (c). Data can then be passed through the model to
obtain a time series of scores corresponding to sleep-wake states (d).
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Figure 6: Closed-loop stimulation via MouseQwake selectively alters REM sleep. (Top) Average sleep-
wake behavior over the stimulation period shows a decrease in mean REM bout duration with a
corresponding increase in number of REM bouts that was proportional to stimulation intensity. However,
homeostatic drive resulting from RSR yielded progressively more frequent transitions to REM sleep as a
consequence, and less time spent in NREM sleep on the way (bottom), which translated to cumulative
proportions of REM similar to that in the baseline. However, further dissection reveals that REM
proportion was greatly reduced over the first 4 hours of the recording, before being later recovered –
depending on stimulation parameters (middle).
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Figure 8: Stimulation via MouseQwake
causes sharp decline in REM probability.
REM probabilities during RSR recordings
were averaged across all REM onsets and
compared to that seen in the baseline.
REM detection latency (~10 sec), coupled
with the programmed detection-to-
stimulation delay (~5 sec) account for the
time it takes for REM probability to diverge
from the baseline trend (approximately 15
sec. after REM onset).
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